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The study aims at showing how the dynamics of tracer gradient accounts for the stirring
mechanism produced by a periodically forced flow relevant to practical mixing operation.
The numerical simulation uses the equations for the orientation and norm of the tracer
gradient and an analytic model for velocity. To a large extent, the micromixer properties
over different ranges of the Strouhal number are explained through the response of the tracer
gradient orientation to the tilting of strain principal axes resulting from flow forcing. The
analysis also reveals a rich picture of stirring as the Strouhal number is varied.
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1. Introduction

In fluid flows used for mixing, stretching caused by stirring raises the contact areas and draws
fluid portions to be mixed together, which hastens the molecular diffusion flux. Low-Reynolds
number flows, by contrast to turbulent flows, do not start the stretching-driven cascade bringing
about the shrinking of scales down to the diffusive lengthscale. Mixing of a weakly diffusive
material, then, may need significant time – or distance – to be achieved. Efficient mixing has
thus to be controlled, which needs precise knowledge of the stirring properties of the flow. This
question is crucial in microfluidics. Chemical, biological and medical applications, in particular,
have given rise to significant investigation in this field both on the practical and academic levels
(Nguyen and Wu, 2005; Capretto et al., 2011; Lee et al., 2011).
The gradient of a scalar – heat, contaminant... – is the finest level at which the problem of

mixing can be tackled, for it gives a direct insight into the stirring mechanisms. This approach is
also plainly suited to the physics of mixing. As the gradient direction and magnitude respectively
correspond to the striation orientation and thickness – fine structures meaning large gradients,
the tracer gradient features are indeed closely connected to the structure of mixing patterns.
The growth rate of the tracer gradient shows the conditions in which stirring may enhance the
diffusion fluxes and is thus a key quantity. Although strain intensity matters, the alignment
of the tracer gradient within the strain eigenframe may be the determining factor. The role of
alignment may be especially critical in non-stationary regimes in which the dynamics of the
tracer gradient – through its response to unsteady mechanical action – drives the growth rate.
Previous studies addressed the dynamics of the scalar gradient orientation (Lapeyre et al., 2001;
Garcia et al., 2005) and its role in the mechanism of the gradient growth was pointed out (Garcia
et al., 2008; Gonzalez and Paranthoën, 2010).
The present study is focused on the kinematics of a tracer gradient in a periodically forced

cross-channel micromixer. The purpose is twofold: i) addressing the role of the tracer gradient
dynamics in stirring produced by a practical mixing device; ii) assessing the relevance of the
tracer gradient approach to the analysis of stirring in this kind of device. It seems that the
operation of such a micromixer has not been studied through the response of a vector field yet.
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The device is an active mixer in which the material flowing in the main channel is stirred
by forcing a pulsating flow in the side channels, a standard geometry in microfluidics. Previous
works (Niu and Lee, 2003; Tabeling et al., 2004; Lee et al., 2007) addressed the conditions in
which chaotic advection is triggered and enhances mixing in this system. In this basic geometry,
stirring properties are ruled by two parameters, namely the Strouhal number St, and the velocity
ratio α – the ratio of maximum pulsating velocity to the maximum velocity in the main channel.
Okkels and Tabeling (2004) and Lee et al. (2007) analysed the folding rate of interface segments
and the mean finite-time Lyapunov exponent, respectively, by spanning both St and α.
In this work, St is varied for two values of α. The flowfield is simulated by the kinematic

model of Niu and Lee (2003) and the Lagrangian, diffusionless equation for the tracer gradient
is solved in terms of orientation and norm. The stirring properties of the flow are scrutinised
through the mean growth rate of the tracer gradient norm for small to large Strouhal numbers.

2. Cross-channel micromixer model

A detailed description of a practical, periodically forced cross-channel micromixer was given by
Lee et al. (2007). A simple sketch of the device is shown in Fig. 1.

Fig. 1. Sketch of the cross-channel micromixer; MC – main channel, SC – side channel,
MZ – mixing zone

The velocity field is simulated by the kinematic two-dimensional model proposed by Niu
and Lee (2003). The flowfield is splitted over different parts of the micromixer and, assuming
very low Reynolds number, the velocity field in the mixing zone is approximated as the linear
combination of the velocity fields in the main and side channels. The latter are assumed to
be parabolic, the velocity is steady in the main channel and periodic in the side channel. The
flowfield model is expressed as follows:
— main channel

u = V0
[

1−
( 2y
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)2]

v = 0 (2.1)

— side channel

u = 0 v = Vf
[
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)2]

cosωf t (2.2)

— mixing zone
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)2]

cosωf t (2.3)
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This model was shown to be consistent with experimental data – including the chaotic regime
– (Lee et al., 2007).

It is straightforward to derive the strain rate, σ =
√

σ2n + σ
2
s – with σn = ∂u/∂x − ∂v/∂y

and σs = ∂u/∂y + ∂v/∂x being the normal and shear strain components – and the vorticity,
ω = ∂v/∂x − ∂u/∂y from Eqs. (2.1)-(2.3). The orientation of the strain principal axes in the
fixed frame of reference (x, y) is defined by the angle Φ through tan(2Φ) = σn/σs. As σn = 0 in
the whole flowfield, the strain rate reduces to σ = |σs|. The orientation of strain principal axes
is a simple piecewise function defined as

Φ =

{

0 for σs > 0

π/2 for σs < 0
(2.4)

The local structure of the flow is defined by Q = σ2−ω2 (Q > 0 in hyperbolic regions and Q < 0
in elliptic regions; Okubo, 1970; Weiss, 1991). The flow structure in the side channel is a pure
shear and Q = 0 in this part of the micromixer. In the mixing zone, where Q ∼ xy cosωf t, the
Eulerian local structure is periodic in time as already mentioned by Lee et al. (2007). However,
the evolution of Q along Lagrangian trajectories is of course more complex.

3. Tracer gradient equations

The general equation for the gradient G of a diffusionless scalar – or tracer – is

DG

Dt
= −ATG (3.1)

where A = ∇u is the velocity gradient tensor. With G = |G|(cos θ, sin θ), Eq. (3.1) gives the
Lagrangian equations for the orientation and norm of G (Lapeyre et al., 1999)

Dθ

Dt
=
1

2
{ω − σ cos[2(θ + Φ)]}

2

|G|

D|G|

Dt
= −σ sin[2(θ + Φ)] (3.2)

The growth rate, η = (1/|G|)(D|G|/Dt), takes the minimum value −σ/2 forG aligning with
the extensional strain direction defined by θe = −Φ+ π/4 and reaches the maximum value σ/2,
when G aligns with the compressive strain direction given by θc = −Φ− π/4.

As a result of the alternating behaviour of Φ, Eq. (2.4), the tracer gradient experiences
unsteady forcing through its orientation with respect to the strain principal axes. As is shown
in this study, the variations of Φ are actually essential to explain the mean growth rate of the
tracer gradient in function of the flow properties.
The Lagrangian dynamics of the tracer gradient orientation is derived by solving Eq. (3.2)1

together with the tracking of particles given by Dx/Dt = u with x being the position vector
and u the modelled velocity field in the mixer. The growth rate of the tracer gradient is then
directly given by Eq. (3.2)2 without solving for the gradient norm. High growth rate indicates
good stirring properties through fast enhancement of local gradients.

The numerical method is a fourth-order Runge-Kutta scheme. Initially, 1000 particles are
located on a line at y = 0 from x = −LS/2 to x = LS/2. As we are strictly interested in the
properties of a single mixing cavity – and not a series of elemental micromixers, each particle
leaving the computational domain at x = LS/2 is reinjected at (x, y) = (−LS/2, 0) with the
initial condition θ = π/2 for the orientation of the tracer gradient, which mimics the tracking
of an interface between two different scalar quantities – say, A and B as shown in Fig. 1.
The numerical timestep is ∆t = Tf/3200 with Tf = 2π/ωf being the time period of the flow
forcing. Statistics are derived by averaging over all the instantaneous values computed along the
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Lagrangian paths during a time interval T = 200Tf . As T amounts to several mean residence
time – 50 at least – this is enough to account for the differences in residence time over the
particle ensemble. Averaging over the values recorded on Lagrangian trajectories is denoted by
brackets. Those averaged quantities duly include Lagrangian information on the evolution of the
tracer gradient. Integrating along trajectories – for the strain and growth rates, for instance –
strictly shows the same behaviour.

4. General features of the kinematics of tracer gradient

The stirring properties of the cross-channel device are described by the amplitude parameter,
α = Vf/V0 and the Strouhal number St = LS/V0Tf (Okkels and Tabeling, 2004; Lee et al.,
2007). In this study, the influence of the Strouhal number is analysed for α = 1 and α = 3 with
LM = LS = 1.

The Lagrangian evolution of the tracer gradient tightly depends on the residence time inside
the micromixer cavity. The mean residence time Tr of a particle injected at (−LS/2, 0) and
leaving the mixing zone at section x = LS/2 is shown in Fig. 2. For a given value of the Strouhal
number, the residence time in the side channels – and thus Tr – obviously grows with α. At
large Strouhal numbers, the time spent in the side channels tends to zero and Tr approaches
the convection timescale Tc = LS/V0 as expected. The ratio of the residence time to the time
period of the flow forcing Tr/Tf = StTr/Tc, thus varies as St at large St values, as shown by the
plot of Tr/Tf .

Fig. 2. Mean residence time in the micromixer cavity; (a) Tr/Tc, with Tc = LS/V0 being the convection
timescale, (b) Tr/Tf , with Tf being the time period of the flow forcing; squares: α = 1, circles: α = 3

Overall, the evolution of the tracer gradient derived from the tracking of particles injected at
(−LS/2, 0) is dominated by rotation. At small Strouhal numbers, however, they are more likely
to experience a pure shear regime as a result of significant time spent in the side channels. This
behaviour is shown by the plots of the respective strain (Q > 0), rotation (Q < 0) and shear
(Q = 0) events ratios along the Lagrangian paths (Fig. 3).

The dependence of the tracer gradient dynamics upon the Strouhal number in terms of the
orientation and norm growth rate reveals a rich phenomenology. From the plot of 〈η〉/〈σ〉 – which
gives a measure of the efficiency of the micromixer (Fig. 4), Strouhal number ranges promoting
good stirring are found together with narrow ranges where stirring is certainly quite poor. While
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Fig. 3. Ratios of strain-, rotation- and shear-dominated events along the Lagrangian paths vs. Strouhal
number; (a) α = 1, (b) α = 3; squares: strain, diamonds: rotation, circles: shear

Fig. 4. Ratio of the mean growth rate to the mean rate of strain, 〈η〉/〈σ〉, vs. Strouhal number;
squares: α = 1, circles: α = 3

its theoretical maximum value is 0.5, 〈η〉/〈σ〉 reaches 0.29 for α = 1 and 0.17, at best, for α = 3.
This is due to a moderate statistical alignment of the tracer gradient with the compressional
strain which most likely results from overall prevailing rotation.

The rather weak alignment of G with compressional strain is confirmed by Fig. 5 displaying
〈σ〉, 〈− sin ζ〉 – with ζ = 2(θ+Φ) – and 〈η〉 in function of the Strouhal number. Far from unity –
the value reached whenG is parallel to compression, the maximum for 〈− sin ζ〉 is 0.31 for α = 1
and 0.16 for α = 3. The mean growth rate depends on the strain level, but the dependence on
the tracer gradient orientation through sin ζ is stronger. This is clear beyond St ≃ 0.7 for α = 1
and St ≃ 1 for α = 3. These results thus suggest that the stirring properties of the flow can be
mainly explained in terms of the dynamics of tracer gradient orientation. As the tracer gradient
is locally normal to the interface separating the material to be mixed, this view agrees with
analyses based on the deformation of interface segments (Okkels and Tabeling, 2004; Tabeling
et al., 2004).
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Fig. 5. Mean rate of strain 〈σ〉 statistical alignment given by 〈− sin ζ〉 and mean growth rate 〈η〉 vs.
Strouhal number; (a) α = 1, (b) α = 3; squares: 〈σ〉/2, diamonds: 〈− sin ζ〉, circles: 〈η〉

5. Dependence of stirring properties on the Strouhal number

5.1. Small Strouhal number

Figure 6 confirms that the mean residence time inside the side channels is significant at small
Strouhal numbers. As a result, the statistics of tracer gradient orientation in this range of the
Strouhal number is governed by pure shear (Q = 0).

From Eq. (2.2), the transversal velocity v and the shear component of strain σs are in phase
in the side channels, where Lagrangian particles move with x = const . Each turning back of a
Lagrangian particle in the side channel thus coincides with a π/2-tilting of the strain principal
axes, Eq. (2.4), that makes sin ζ – and hence η – change sign; the way back is always covered
with the sign reversed for the growth rate which, on average, is therefore close to zero in the side
channels. Figure 7 shows the trajectories as well as the Lagrangian histories of σ, sin ζ and η for
α = 1 and St = 0.125.

The mean values conditioned on pure shear 〈− sin ζ|Q = 0〉 and 〈η|Q = 0〉, are close to zero
up to St ≃ 0.35 (Fig. 8a). The same behaviour for α = 3 is displayed in Fig. 8b.

5.2. Large Strouhal number

The behaviour of the tracer gradient at large Strouhal numbers is governed by the tilting
of strain principal axes in the mixing zone. The tilting of strain principal axes occurs in the
elliptic regions; it is easy to show, from the expressions for σs and Q, that σs changes sign –
which also amounts to σ = 0 – only if Q < 0. As St is increased, the mean tilting frequency fΦ
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Fig. 6. Mean ratio TSC/T of time spent in the side channels during simulation; squares: α = 1;
circles: α = 3

Fig. 7. Lagrangian signals for α = 1 and St = 0.125; (a) solid line: σ, short dash: x, long dash: y;
(b) solid line: − sin ζ, dashed line: η; each arrow shows a turning back in a side channel

grows linearly as shown in Fig. 9 (Tr ≃ Tc at large Strouhal numbers, Fig. 2). At large Strouhal
numbers, the tracer gradient thus experiences faster and faster changes in the strain direction.
The latter become too fast for the tracer gradient to respond and its orientation gets closer and
closer to the direction of a bisector of strain principal axes for which sin ζ = 0 – and η = 0. As
a result, the mean growth rate decays at large Strouhal numbers.
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Fig. 8. Mean values of − sin ζ and η conditioned on pure shear vs. Strouhal number; (a) α = 1,
(b) α = 3; diamonds: 〈− sin ζ|Q = 0〉, circles: 〈η|Q = 0〉

Fig. 9. Mean tilting frequency of strain principal axes normalised by the mean residence time in the
mixing cavity vs. Strouhal number; squares: α = 1; circles: α = 3

On a more general level, this mechanism is clearly reminiscent of the nonadiabatic regime of
the scalar gradient response to unsteady forcing in which the scalar gradient does not keep up
with fast changes in strain persistence – or in strain principal axes direction (Garcia et al., 2008;
Gonzalez and Paranthoën, 2010). The probability density function (p.d.f) of the tracer gradient
orientation (Fig. 10) shows the gradual preferential alignment with a bisector of strain principal
axes at large Strouhal numbers.

For α = 1, the variance of sin ζ is 0.243, 0.102 and 0.0707 at St = 2, 3 and 4, respectively;
for α = 3 these values are 0.687, 0.548 and 0.396. The tendency is less marked when α = 3 for
which higher strain and vorticity levels result in a better response of the tracer gradient to the
mechanical action of the velocity gradient.
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Fig. 10. P.d.f’s of tracer gradient orientation; (a) α = 1, (b) α = 3; solid line: St = 2, short dash: St = 3,
long dash: St = 4

5.3. Middle-range Strouhal number

5.3.1. Vanishing mean growth rate and resonance phenomenon

Poor stirring properties are also found for Strouhal number ranges in which the mean resi-
dence time takes special values. For α = 1, the mean growth rate is virtually zero – 0.021 and
0.0030, while the maximum value is 0.88 – at St = 1.5 and St = 2.5 (Fig. 5) where Tr/Tf = 1.52
and 2.52, respectively (Fig. 2). For α = 3 〈η〉 = 0.012 – maximum value: 0.99 – at St = 3.4375
for which Tr/Tf = 3.52. These results are reminiscent of the resonance phenomenon found by
Okkels and Tabeling (2004) in which the folding rate of an interface segment falls to zero when
Tr/Tf = (n + 1/2) – with n ∈ N. The authors show that a resonance occurs when the per-
turbation of a point on the interface developing within the first half of the mixing region is
reversed and strictly offset in the second part – incidentally, this needs n  1. The analysis in
terms of the tracer gradient orientation agrees with this mechanism. Figure 11, plotted for α = 1
and St = 1.5, shows that the interplay between the periodic flow forcing and the position on a
trajectory brings about a symmetric Lagrangian signal of strain over the residence time inside
the mixing cavity.

Especially, the strain tilting events felt by the tracer gradient along a Lagrangian path are
symmetric. They occur for σ = 0, namely whenever y + αx cos ωf t = 0, which is true near the
center of the cavity – where x = y = 0, but also at any position provided that x, y and t fulfill
the latter condition – as shown in Fig. 11. The special behaviour of strain results in a symmetric
signal for sin ζ and thus for η which, on average, cancels out over the mean residence time. This
analysis is confirmed by the Lagrangian plots for α = 1 and St = 2.5 as well as for α = 3 and
St = 3.4375 (not shown). Figures 11 also displays the Lagrangian evolution of Q.

5.3.2. Negative mean growth rate

Negative values of the mean growth rate are found over narrow ranges of the Strouhal number
and especially for α = 1 (Fig. 5). They obviously result from a statistical alignment of the
tracer gradient closer to the extensive than to the compressive strain direction. In these special
conditions, the flowfield opposes stirring which may prevent mixing. While 〈η〉/〈σ〉 = −0.025,
at best, for α = 3, the most significant negative values of 〈η〉 for α = 1 are found at St = 0.1875,
0.425 and 0.85 where 〈η〉/〈σ〉 = −0.12, −0.11 and −0.11, respectively. In this ranges of the



1266 M. Gonzalez

Fig. 11. Lagrangian signals for α = 1 and St = 1.5; (a) solid line: cosωf t, short dash: x, long dash: y;
the arrows show the injection and exit of the Lagrangian particle; (b) solid line: σ, dashed line: Q;

(c) solid line: − sin ζ, dashed line: η

Strouhal number, Tr/Tf takes special values – ∼ 0.5 for St = 0.1875 and 0.425, ∼ 1 for St = 0.85
(Fig. 2). At St = 0.1875, the tracer gradient evolution is mainly governed by shear (Section 5.1).
At St = 0.425 and 0.85, both the flow structure and orientation dynamics explain the negative
values of the mean growth rate. As shown in Fig. 3, the ratio of rotation events sharply peaks
near these St values and the tracer gradient essentially experiences an elliptic regime. And the
sharp drops of − sin ζ at St = 0.425 and 0.85 (Fig. 12), showing statistical alignment near the
extensive strain direction, deepen negative 〈η〉.

At those Strouhal numbers, this statistical alignment with extensive strain in hyperbolic
regions is explained by unsteadiness. In fact, the time spent in the hyperbolic regime is much
too short for strain to bring back the tracer gradient from the extensive to the compressive
direction after tiltings occuring in the elliptic regions.
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Fig. 12. Statistical orientation of the tracer gradient; α = 1; solid line: 〈− sin ζ〉, squares: conditioning
on hyperbolic events, 〈− sin ζ|Q > 0〉, circles: conditioning on elliptic events, 〈− sin ζ|Q < 0〉

5.3.3. Maximum mean growth rate

Finally, good stirring must be restricted to moderate Strouhal numbers away from the small
and large Strouhal number ranges where the tilting of strain principal axes make the mean
growth rate collapse (Sections 5.1 and 5.2). In addition, Tr/Tf must not take special values
resulting in limiting mechanisms such as resonances. Then, good stirring conditions are found,
roughly, from St = 0.48 to 0.75 for α = 1 and St = 0.95 to 1.6 for α = 3 (Figs. 4 and 5)
with peak values at St = 0.5 and 1.25, respectively. In a pure kinematic view, these findings are
consistent. The ratio of strain-dominated events as well as the mean strain rate indeed reach
maximum values over those Strouhal number ranges (Figs. 3 and 5). And the maximum of
〈− sin ζ〉 agrees with the peak values of 〈η〉. As already mentioned by Lee et al. (2007), optimal
stirring is thus ensured by the values of the control parameters, St and α, defining the best
conditions for particles to reach a hyperbolic region and spend enough time therein. Figure 13
shows the Lagrangian signals for α = 1 and St = 0.5.

By x = cte-segments, the trajectories inside the cavity reveal the inroads into the side
channels. As a possible result of the chaotic behaviour, they do not display any clear periodic
features. Instead, it appears that a particle may either cross the mixing zone straight or spend
a variable time inside the side channel. The sample signals also confirm the significant ratio of
strain-dominated events as well as the relative large time spent by the tracer gradient near the
compressive direction of strain.

6. Conclusion

This study confirms that despite the significant role of the strain level, the response of the tracer
gradient orientation to unsteady strain is a key mechanism to explain the stirring properties of
a periodically forced, cross-channel micromixer.

This approach also gives a detailed insight into the micromixer properties. At small Strouhal
numbers, the mean growth rate of the tracer gradient shrinks, thus showing poor stirring; the
major part of the mean residence time is spent in the side channels where the periodic, symmetric
reversing of the orientation of the tracer gradient with respect to the strain principal axes cancels
its growth rate. At large Strouhal numbers, the tracer gradient does not respond to the fast
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Fig. 13. Lagrangian signals for α = 1 and St = 0.5; (a) solid line: x, dashed line: y, (b) solid line: σ,
dashed line: Q; (c) solid line: − sin ζ, dashed line: η

changes in the strain direction caused by flow forcing and aligns closer and closer to a bisector
of strain principal axes where the growth rate vanishes.

Good stirring conditions are found in the middle range of the Strouhal number. They are
fulfilled at Strouhal numbers for which the hyperbolic regime prevails and the mean strain rate
reaches its maximum values on Lagrangian trajectories, namely within St = 0.48 to 0.75 for
α = 1 and St = 0.95 to 1.6 for α = 3 with peak values at St = 0.5 and 1.25, respectively. Poor
stirring, however, may occur in narrow windows of the Strouhal number where the mean growth
rate either vanishes – which precisely corresponds to the resonance phenomenon pointed out by
Okkels and Tabeling (2004) – or takes negative values as a result of both the flow structure and
dynamics of tracer gradient orientation when the elliptic regime prevails along the Lagrangian
trajectories.
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3. Garcia A., Gonzalez M., Paranthoën P., 2008, Nonstationary aspects of passive scalar gra-
dient behaviour, European Journal of Mechanics B/Fluids, 27, 433-443
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